Des mesures électriques effectuées directement à la Bibliothèque "Teleki" de Târgu-Mureș, 14 mois après l'exécution de l'installation d'électrodrainage et environ 10 mois à partir du jour où on a constaté le recul de l'humidité (fig. 25), permettent d'autres conclusions intéressantes. À la suite du recul de l'humidité, le potentiel décroît normalement vers la base de la construction; on connaît aussi des cas (cas 1) où l'humidité, due aux caractéristiques de la structure de la maçonnerie (porosité, cavités isolées) vient stagner au-dessus de la zone à défaut, et l'élimination intervient par des voies latérales, donc plus lentement; en même temps, le drainage de la zone située au-dessous du défaut, continue normalement et la réduction du potentiel est déterminée expérimentalement (fig. 26).

Pour éviter les confusions, nous précisons que les valeurs représentées dans la figure 25 se réfèrent seulement à une hauteur réduite (jusqu'à 1 m), car la maçonnerie s'était bien séchée et une perforation avec des sondes s'avérait inutile, le mur étant déjà restauré.

Les concentrations d'ions constatées dans les états d'humidification à la limite supérieure de l'invasion (fig. 24) n'ont aucun rapport avec l'absence de cet état à la limite supérieure des anciennes zones envahies et à présent séchées (fig. 25), car la mesure de la concentration electrolytique est difficile à effectuer, à cause de l'augmentation de la résistivité, l'eau s'étant retirée.

Donc, ces observations confirment la conclusion de J. Fève d'après laquelle l'eau qui a migré dans le bâtiment par électro-capillarité comporte deux voies d'évacuation:
- la voie à double sens, favorable pour le bâtiment, qu'on peut obtenir par électrodrainage et qui assure en réalité l'élimination de la plus grande partie de l'humidité;
- la voie à sens unique, de l'évaporation directe de la paroi, en atmosphère, le plus souvent dans le sens horizontal, qui comporte des inconvénients; par l'électrodrainage passe le danger d'une recristallisation des sels n'existe pas, car la vitesse d'écoulement et la quantité d'eau, sont réduites.

CHAPITRE II. LE DIMENSIONNEMENT DES INSTALLATIONS D'ÉLECTRODRAINAGE.

1. Installations d'électrodrainage actif.

a. Dispositif à électrodes +, - , montées en parallèle, à la partie inférieure de la zone envahie par l'humidité.

Pour le drainage d'une construction, à l'aide d'une source de courant continu, on peut utiliser deux schémas de liaison en parallèle des électrodes :

- le schéma avec anodes montées sur l'une des faces de la maçonnerie et avec cathodes montées sur l'autre face (fig. 27a),
- le schéma avec cathodes et anodes montées sur la même face de la maçonnerie, alternativement et en parallèle (fig. 27b).

On sait que le drainage se produit dans le sens anode-cathode, où l'humidité s'amasse. Les anodes sont des barres en acier doux, cuivre ou aluminium, et les cathodes des tuyaux perforés, réalisés avec des matériaux identiques.

Pour le calcul de l'installation, on a adopté la méthode proposée par Schaad et Haefeli, utilisée dans le cas des terrains, en observant que dans le cas de la maçonnerie, le matériau est consolidé, n'étant pas compressible (dans le sens des terrains).

Le débit électroosmotique, s'établit, en prenant comme base le schéma de la fig. 28, avec :
- R, la résistance électrique de la maçonnerie parcourue par le courant,
- ρ, la résistivité de la maçonnerie
- l, l'intensité du courant
- k, le coefficient de perméabilité électroosmotique,
- j, la densité du courant migrateur.

On peut obtenir les relations suivantes :
1) \(\frac{dQ_e}{\rho} = V_e, \frac{dK_e}{E df} \)
2) \(E = \frac{\zeta}{j}, j \)
3) \(Q_e = \frac{k_e}{j} df \rho_z = k_e \frac{d}{j} df = k_e \rho_z \)

Les équations ont la même forme mathématique dans le cas de la transmission de la chaleur, des courants électriques, de l'eau souterraine, de la thermoosmose, etc.

En prenant pour base le schéma de la fig. 28 b, on obtient:
4) \(dR = \frac{\rho_e}{\pi \times r^2} \) (on a admis l'hypothèse de la propagation du courant par ondes semi-circulaires)
5) \(R = \sqrt{\frac{dx}{\rho}} = \frac{\zeta}{\pi r^2} . \frac{d}{r} \sqrt{x} \ln \frac{d}{r} \)
6) \(I = U \frac{KUf}{R \rho_z} \)
7) \(Q_e = k_e \rho_z \)

Les expériences effectuées ont montré que le séchage
électroosmotique, interviennent certains phénomènes secondaires, qui restreignent en quelque mesure l'exactitude des formules théoriques. Les plus importantes sont : l'élévation de la température du milieu et comme suite, l'augmentation de la résistance, et enfin l'arrêt du processus électroosmotique.

Cela veut dire que la densité du courant ne doit pas dépasser une certaine limite, parce qu'à partir de 2 m A/cm², commencent les phénomènes de chauffage.

La variation de la résistivité influence aussi la consommation d'énergie électrique.

Dans le cas le plus simple, sans considérer les modifications de la résistivité, la consommation est :

\[
\begin{align*}
(8) \quad A &= \int_0^t I \, dt = I \, t \\
(9) \quad B &= \int_0^t U I \, dt = U I t
\end{align*}
\]

(consommation d'électricité)

En considérant la résistance variable d'après la loi :

\[
R = R_0 + \alpha \, t
\]

il en résulte :

\[
\begin{align*}
(10) \quad A &= \int_0^t I \, dt = I \, t \\
(11) \quad B &= \int_0^t U I \, dt = \frac{\alpha}{2} t^2 + R_0 \, t \quad t = \frac{\alpha}{2} (A + R_0) \, I \, A
\end{align*}
\]

On a effectué à titre expérimental des opérations de séchage des terrains, en utilisant le courant alternatif, mais en principe le phénomène est tout à fait différent; on obtient ainsi un chauffage du milieu et la baisse de l'humidité par l'évaporation de l'eau. L'utilisation du courant alternatif, provoque seulement la vibration des ions et non pas leur transport vers les électrodes.

La consommation moyenne d'électricité qu'on peut obtenir dans le cas des constructions, est d'environ 100 A h/m³ pour une baisse d'humidité de 1 %.

Pour éviter l'apparition des tâches sur les crépis, à la suite de l'efflorescence des sels, on recommande des intensités entre 0,1-1,0 A/m²; des intensités au-dessus de 20 A/m², conduisent au chauffage des maçonnérries.

Pour le schéma de la figure 27 a, b, on peut calculer les différents paramètres nécessaires, c'est-à-dire:
- la résistance électrique de la maçonnerie, dans le sens horizontal, pour une paire d'électrodes et pour 1 m d'hauteur du mur :

\[R = \frac{\rho_z \, d}{\ell}, \text{\(\rho_z\) en \(\Omega\cdot m\), \(d\) et \(\ell\) en mètres} \]

- l'intensité du courant pour une paire d'électrodes, et pour 1 m d'hauteur du mur :

\[I = \ell \cdot I_{j} \text{ où } I_{j} \text{ est la densité du courant en A/m}^2 \]

Il en résulte le voltage, l'intensité et la puissance nécessaire de l'installation :

\[U = \rho_z \, d \cdot j \]

\[I_{tot} = n \cdot I \]

\[W = U \cdot I, \]

où \(n\) est le nombre des interspaces entre les électrodes. On remarquera que dans (13) on n'a pas tenu compte de la propagation du courant électroosmotique par des ondes concentriques, comme dans les expressions (5), (6), (7), mais cette omission ne constitue pas une difficulté dans les calculs proprement dits, comme on le verra plus loin.

Il résulte des faits expérimentaux, qu'il est nécessaire de tenir compte de la modification de la résistivité avec le temps.

Dans l'expression (10) on a admis une variation linéaire par rapport au temps, qui complique les calculs, même dans les cas les plus simples, en conduisant pour le calcul de la dépense d'énergie électrique, à une expression carrée par rapport au temps.

A l'Institut Polytechnique de Jassy, on a étudié dans le laboratoire sur une maquette, la variation de la résistivité, quand celle-ci a été soumise à un processus tant actif que passif de séchage (147). Dans le tableau (1) on reproduit d'après (147), la variation de la résistance spécifique (résistivité) dans le mur expérimental (1) qui a été exécuté en briques avec du mortier ciment-chaux-sable.

Les électrodes en cuivre utilisées avaient un diamètre de 4 mm et ont été disposées à 25 cm de distance entre elles.

Il résulte de l'examen du tableau que l'augmentation de la résistivité a été d'environ trois fois dans le cas de la méthode passive de séchage, appliquée pendant un intervalle de temps de 150 jours, et de 1,5 fois dans le cas de la méthode active, appliquée 30 jours; après 120 jours, l'augmentation de la résistivité
Séchage par électroosmose. Résistance spécifique linéaire (\(\rho \))
(ohms x cm du mur expérimental)

<table>
<thead>
<tr>
<th>Prise</th>
<th>Méthode passive</th>
<th>d'assèchement</th>
<th>Méthode active de séchage</th>
<th>Courant continu 60 volts</th>
<th>Méthode active puis méthode passive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-33</td>
<td>8.350</td>
<td>8.350</td>
<td>20.800</td>
<td>38.000</td>
<td>22.935</td>
</tr>
<tr>
<td>32-32</td>
<td>5.000</td>
<td>6.280</td>
<td>10.000</td>
<td>21.700</td>
<td>16.680</td>
</tr>
<tr>
<td>31-31</td>
<td>7.500</td>
<td>7.500</td>
<td>16.700</td>
<td>20.000</td>
<td>17.514</td>
</tr>
<tr>
<td>30-30</td>
<td>10.400</td>
<td>10.400</td>
<td>11.300</td>
<td>21.700</td>
<td>27.005</td>
</tr>
<tr>
<td>23-23</td>
<td>14.600</td>
<td>20.800</td>
<td>41.750</td>
<td>109.000</td>
<td>83.400</td>
</tr>
<tr>
<td>22-22</td>
<td>12.600</td>
<td>14.600</td>
<td>29.200</td>
<td>104.500</td>
<td>68.805</td>
</tr>
<tr>
<td>21-21</td>
<td>12.600</td>
<td>14.600</td>
<td>31.400</td>
<td>208.000</td>
<td>91.740</td>
</tr>
<tr>
<td>20-20</td>
<td>12.600</td>
<td>14.600</td>
<td>27.100</td>
<td>83.800</td>
<td>125.100</td>
</tr>
</tbody>
</table>

\[P = R \frac{S}{H} \quad S = \text{la surface de l'électrode mobile} = 12.5 \text{ cm}^2 \]

\[H = \text{l'épaisseur du mur} = 30 \text{ cm} \]
Dans le cas de la méthode active, pour laquelle on a utilisé une tension de 60 volts, était deux fois plus grande par rapport à la valeur initiale. Cette expérience confirmée pour 25 cas, dans le laboratoire, dans diverses situations, permet de simplifier le calcul, en tenant compte de la variation de la résistivité au cours du processus de séchage, par l'introduction d'un coefficient.

En admettant un coefficient de sécurité de calcul de \(C = 10 \), appliqué au temps nécessaire de séchage actif ou passif, résultant d'une expression linéaire pour le volume d'eau drainée en fonction du temps (\(V_e \)), on peut obtenir le temps réel nécessaire de fonctionnement de l'installation de drainage, conformément à l'expression :

\[
(10) \quad t_{\text{réel}} = t, \text{c.} = c_e, \frac{V}{h^a}
\]

De l'exemple suivant de calcul, il ressort que cette simplification est tout à fait justifiée.

Exemple 1.

Maçonnerie en briques, 2 m de longueur x 1,50 m de hauteur x 24 cm d'épaisseur, dans laquelle on a implanté des électrodes en cuivre (\(\Phi 8 \) mm) à 25 cm distance, la hauteur envahie par l'humidité est de 75 cm. La tension du courant continu utilisée est de 60 V, la résistivité \(\rho \) de la maçonnerie au moment de l'opération de drainage, est de \(10^8 \) \(\Omega \) cm, et le coefficient de filtration de \(K = 10^{-4} \) cm²/sec. V. L'humidité de la maçonnerie était de 10% au commencement du drainage.

On doit calculer le temps nécessaire de drainage, en admettant un coefficient de sécurité de \(C = 10 \).

\[
j = \frac{U}{\rho} \cdot \frac{d}{2} = 2,4 \times 10^{-4} \text{A/cm}^2
\]

\[
Q_e = K \pi \frac{U}{h} \cdot \frac{1}{ln(\frac{d_1}{h})} = 3,14 \times 24 \times 100 \times \frac{1}{ln(0,4)} = 0,2 \text{ cm}^3/\text{sec} = 0,756 \text{heure/25 cm linéaires}
\]

Le volume d'eau à drainer entre deux électrodes est :

\[
V_a = 0.1 \times 25 \times 75 \times 24 = 4500 \text{ cm}^3
\]

\[
t_{\text{réel}} = \frac{V}{Q_e} = 10 \times \frac{4500}{100},000 = 225,000 \text{ sec} = 6,25 \text{ h} = 2,6 j = 3 \text{ jour}
\]

On doit observer que l'on a tenu compte de la propagation du courant électroosmotique par ondes concentriques.

Exemple 2.

On doit calculer l'intensité, la tension et la puissance de l'installation d'électrodrainage, pour une construction en maçonnerie de briques, ayant une épaisseur d'un mètre, dans laquelle l'humidité atteint 2 m de hauteur. Les électrodes sont placées à 50 cm d'intervalles et leur diamètre est de 10 mm. Les données physiques de la maçonnerie sont \(\rho = 10^6 \) \(\Omega \) cm et \(K_e = 10^{-9} \) cm²/sec. V., \(u = 8 \% \).

Pour la première épreuve de calcul on choisit une source de 24 V.

La densité de courant est

\[
j = \frac{U}{\rho} \frac{d}{2} = 48 \times 10^{-6} \text{ A/cm}^2
\]

\[
I = t, j = 48 \times 10^{-6} \times 100 = 48 \times 10^{-4} \text{ A}
\]

\[
Q_e = K_e \pi U \frac{1}{ln(\frac{d_1}{h})} = 3,14 \times 25 \times 24 \times 100 \times \frac{1}{ln(0,4) \times 0,2} = 4,000,000 \text{ sec} = 1120 \text{ h} = 46 \text{ jours}
\]

Pour une source de 60 V et des électrodes fixées à une distance de 30 cm, avec \(\Phi 6 \) mm on obtient :

\[
Q_e = 1 \times 10^{-5} \times 3,14 \times 60 \times 100 \times \frac{1}{ln(0,3)} = 0,46 \text{ cm}^3/\text{sec}
\]

\[
V_a = 30 \times 200 \times 50 \times 0,06 = 60,000 \text{ cm}^3
\]

\[
t_{\text{réel}} = \frac{V}{Q_e} = 10 \times \frac{60,000}{0,2} = 3,000,000 \text{ sec} = 1920 \text{ h} = 80 \text{ jours}
\]

On doit observer que l'on a venu le courant de propagation des électrodes dans le cas d'une grande tension, le calcul sera effectué pour une tension de 8 V.

\[
Q_e = K_e \pi U \frac{1}{ln(\frac{d_1}{h})} = 10^{-4} \times 3,14 \times 8 \times 100 \times \frac{1}{ln(0,3)} = 0,695 \text{ cm}/\text{sec/30 cm linéaires}
\]

Dans le tableau qui suit, on a présenté en parallèle, les exemples donnés :

<table>
<thead>
<tr>
<th>Tension (V)</th>
<th>Intensité (A)</th>
<th>Puissance (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>48</td>
<td>0,695</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>0,46</td>
</tr>
<tr>
<td>V \text{cm}^3</td>
<td>c \text{ cm}</td>
<td>\text{mm}</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>4500</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>0.000</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8.000</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>48.000</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

b. Le dispositif à électrodes (+) montées dans la maçonnerie, à la partie inférieure de la zone envahie par l'humidité et l'électrode négative montée dans le terrain, sous forme de prise de terre.

Dans ce système de montage, l'électrodrainage s'effectue dans le sens vertical, étant en grande partie semblable, comme sens de transport de l'humidité, à l'électrodrainage passif. La différence consiste dans l'activation du processus de séchage, par l'agrandissement de la différence naturelle du potentiel, en introduisant dans le circuit une source de courant. Les recommandations sur l'intensité et la densité du courant à utiliser, données dans le paragraphe précédent, sont les mêmes.

Dans les figures (29-30 a, b) on reproduit le montage d'après le Dr Massari avec les recommandations pour le cas cité dans son ouvrage (49).

La quantité d'eau à drainer par une paire d'électrodes est

\[V_a = \ell \cdot d \cdot j_{\text{tot}} U \% \]

où \(h_{\text{tot}} \) est la hauteur de l'humidité.

Dans une première approximation, on émet l'hypothèse que la résistance du mur dans le sens vertical (conformément au sens de transport de l'humidité) est pratiquement constante entre deux électrodes (fig. 31) :

\[R = \frac{\rho_e h_{\text{tot}}}{\ell \cdot d} \]

où \(\rho_e \) est la résistivité de la maçonnerie qui ne doit pas être confondue avec la résistivité de l'humidité migratoire.

Dans le chapitre I on a montré que le débit dans le cas du processus de filtration est donné par (14), lequel devient avec les notations pour le problème dont il est question ici (\(\ell = h_{\text{tot}} \) et...
S la surface entre deux électrodes \(S = dt \) :

\[
Q = K \frac{dt \varphi}{\eta h_{tot}}
\]

(21)

Le débit électroosmotique possible est donné par l'expression (3) du paragraphe précédent.

\[
Q_e = K_c \rho_z I
\]

qui doit être égal au débit de filtrage, pour réaliser le drainage

\[
Q = Q_e
\]

(22)

\[
\frac{K \frac{dt \varphi}{\eta h_{tot}}}{\eta h_{tot}} = I
\]

(23)

De l'expression (23) on peut déduire l'intensité du courant nécessaire à introduire pour réaliser le drainage; l'expression est fonction seulement des caractéristiques physiques de la maçonnerie :

\[
I = \frac{K \frac{dt \varphi}{\eta h_{tot}}}{K c \rho_z I}
\]

(24)

La pression de (24) est la pression hydrostatique donnée par la colonne du liquide :

\[
P = j h_{tot}.
\]

(25)

En appliquant la loi d'Ohm \((U = R I) \) dans laquelle on introduit \(R \) de (20) et \(I \) de (24) et où on a remplacé \(P \) par sa valeur (25) on obtient :

\[
U = \frac{K \frac{dt \varphi}{\eta h_{tot}}}{K c \rho_z I}
\]

(26)

Le contrôle de (26) par une équation de dimensions est particulièrement intéressant :

\[
K = L T^{-1}; K_c = L^2 T^{-1} V^{-1}; \eta = L^{-1} M T^{-1}; \gamma = M L^{-2} T^{-2} U = \frac{L T^{-1} L M^{-2} T^{-2} V^{-1}}{L^2 T^{-1} V^{-1} M T^{-1}} = \frac{V}{L T}
\]

On doit observer cependant que dans (26), la tension varie linéairement et est donc directement proportionnelle avec la hauteur.

Si on replace (25) dans (24) l'intensité apparaît comme fonction non seulement des données physiques, mais aussi comme fonction de la distance entre les électrodes et de l'épaisseur de la maçonnerie.

\[
I = \frac{K \frac{dt \varphi}{\eta h_{tot}}}{K c \rho_z I}
\]

(27)

Exemple. On doit calculer la tension et l'intensité du courant nécessaire pour l'amorçage du processus d'électrodrainage d'un mur en maçonnerie ayant une épaisseur d'un mètre et des électrodes disposées à 50 cm interaxe et dont l'humidité a monté à 1 m d'hauteur.

\(K = 1,25 \times 10^{-7} \) cm/sec, \(K_c = 0,5 \times 10^{-5} \) cm²/sec, \(\eta = 0,01 \) poises, \(\rho_z = 10^4 \) \(\Omega \) cm).

On doit tenir compte à la fin, en divisant par \(g (981 \text{ cm/sec}^2) \), du fait que dans (26) on mesure des grammes-masse, le processus étant en réalité gravitationnel et par conséquent on doit introduire dans l'expression (26) des grammes-forces :

\[
U = \frac{1,25 \times 10^{-7} \times 100}{95 \times 10^{-5} \times 0,01} = 0,255 \text{ V.}
\]

tension correspondant en général à celles mesurées sur les constructions :

\[
I = \frac{4,25 \times 10^{-7} \times 50 \times 100}{0,5 \times 10^{-5} \times 0,1 \times 10^4 \times 981} = 0,0012 \text{ A = 1,2 mA.}
\]

ce qui correspond également aux constatations et aux pratiques expérimentales.

Les expressions déterminées (26) et (27) permettent certaines conclusions :

- les expressions sont valables tant pour l'électrodrainage actif que pour l'électrodrainage passif. La tension donnée par (26) indique les différences naturelles de potentiel nécessaires pour l'amorçage de l'électrodrainage passif;
- dans le cas du drainage actif, en assurant une tension de la source constante, on accélère le processus, par rapport au progrès de l'opération de drainage;
- il résulte du grand nombre d'essais effectués que la tension à introduire doit être, au moins au début de la mise en marche de l'installation, plus grande que celle donnée par l'expression (26).
Le coefficient de sécurité doit être choisi aussi pour ce type de montage, pour satisfaire les conditions de corrosion et de vitesse de drainage. Dans les cas communs, c = 10.

Pour le cas précédent \(U_{act} = c U = 2.5 \text{ V} \).

2. Éléments nécessaires pour dimensionner les installa-
tions d’électrodrainage, en tenant compte du danger de la corrosion des électrodes.

Pendant l’utilisation des installations d’électrodrainage, on a constaté des phénomènes de corrosion des électrodes des installa-
tions. A partir de données expérimentales, les chercheurs allemands (146) surtout, limitent dans leurs derniers ouvrages, les tensions à environ 1-4 volts. Les chercheurs soviétiques ont trouvé une autre solution pour le problème de l’accélération du séchage, en appliquant autour de l’électrode un enduit antipolarisant, donc implicitement anticorrosif.

Dans ce qui suit nous proposons d’élucider aussi cet aspect.

Le danger de la corrosion des électrodes est conditionné par le pH de la maçonnerie humide, et par la tension à laquelle elles sont soumises. En tenant compte du fait que dans les appli-
cations pratiques on utilise surtout des électrodes en cuivre, acier doux et aluminium, nous insisterons surtout sur leurs caractéris-
tiques. On sait que le pH des maçonneries est fonction de la nature du liant et de l’eau qui a migré dans la construction; il est par conséquent nécessaire de déterminer le pH pour chaque cas à part. Quoi qu’on connaît les limites communes de la variation du pH des maçonneries, l’humidity plus ou moins abondante peut opé-
rer des changements sensibles.

Une vieille maçonnerie exécutée avec du mortier de chaux, ayant une épaisseur modérée, a un pH faiblement alcalin (8), et une maçonnerie épaisse peut avoir à la moitié de son épaisseur un pH d’environ 9-10. Par contre, une maçonnerie exécutée avec un mortier de ciment, à carbonatation plus difficile, à un pH d’en-
viron 11-12 si elle est récente et d’environ 9-11 si elle est vieille.

Dans cette situation, si on examine les diagrammes Pourbaix pour le cuivre, le fer, l’aluminium, le zinc et l’étain, on arrive aux conclusions suivantes :

- Dans le cas du cuivre, si le pH varie entre 7-12, l’élec-
trode résistera dans de bonnes conditions à n’importe quelle tension, en devenant passif par une couche d’oxygène ou d’hydro-
xide. Pour des tensions négatives elle est immunisée pour toute valeur du pH.

Dans le cas du fer, ou de l’acier, si le pH est plus grand que 8 et les tensions des électrodes positives le métal de-
vient passif. Pour des tensions négatives au-dessous de 0,6 V in-
tervient l’immunité jusqu’à pH = 14. Avec l’élévation de la tension négative s’élève aussi les limites du pH.

- Dans le cas de l’aluminium, si le pH est entre 4 et 9 le métal devient passif pour n’importe quelle tension. On doit ati-
trer l’attention sur la sensibilité de ce matériau dans un milieu alcalin et sur la nécessité de prendre des mesures de sécurité par le prélèvement des éprouvettes de la maçonnerie à drainer.

- Dans le cas du zinc à l’aide duquel on réalise les pri-
ses de terre, la passivité est très réduite pour des tensions posi-
tives, c. à d. pour le pH entre 8,5 - 9,0. Pour des tensions dé-
passant - 1 V, l’immunité est assurée pour tout pH.

- L’étain qui devient passif pour un pH entre 0 et 12 et pour toute tension positive, serait le meilleur matériau pour les électrodes si son coût de revient n’était pas trop élevé. Pour cette raison les alliages de cuivre-étain (les bronzes) ou avec d’autres métaux (le laiton) sont les meilleurs à utiliser.

Pour connaître la résistance anti-corrosive des prises de terre et aussi l’agressivité des eaux phréatiques entraînées sous les constructions, il est important de connaître le pH des différents terrains de fondation, comme par exemple :

- argile caolinuse pH = 4,5
- loess pH = 7
- sable pH = 5
- bentonite pH = 5 - 6,5
- argile pH = 5

Par conséquent, les caractéristiques des terrains varient entre faiblement acides et faiblement alcalins. Par exemple le sable et le terrain à proximité de la mer ont un pH = 8 - 8,2.

En conclusion, ce n’est pas seulement la tension de l’élec-
trode qui présente un danger, mais surtout le pH du milieu ; l’affirmation de Wieden dans (146) nous semble donc assez curieuse à cet égard ; Wieden n’analyse pas le problème du pH mais se bor-
né à apprécier que seulement les tensions dépassant 5 V sont la cause de la corrosion des électrodes. Par contre nous considérons intéressante la contribution de Fridman (77) qui propose l’utilisa-
tion d’un mastic antipolarisant, ou d’un électrode introduit dans un petit sac chargé de matériau antipolarisant, qui couvre les élect-
rodes et les protège même après leur montage.

3. Installations d’électrodrainage passif.

Pour le drainage bâtiment humide à l’aide de la
différence naturelle de potentiel, les électrodes peuvent être montées sur une des faces de la maçonnerie ou sur les deux faces. Dans ce cas, le principe du drainage est tout à fait différent, ainsi qu'on l'a montré dans le chapitre I; le drainage intervient dans le sens vertical par le matériau poreux même, les électrodes positives étant montées dans la maçonnerie et l'électrode négative représentée par la prise de terre. Par contraste avec la méthode active de drainage pour laquelle on utilise le même montage, la différence de potentiel est plus réduite et variable par rapport à l'évolution du séchage du bâtiment (fig. 30).

Les expressions (26) et (27) utilisées dans le paragraphe 1, qui donnent la tension et l'intensité nécessaires pour le drainage électroosmotique, restent valables aussi dans le cas du drainage passif. Dans la majorité des cas, l'accélération d'un drainage peut être obtenue au début par un drainage actif, après quoi le courant peut être interrompu et l'installation devient une installation d'électrodrainage passif.

Le diamètre, la nature et la distance entre les électrodes sont les problèmes les plus importants posés par l'électrodrainage passif. Ainsi qu'on a montré dans le chapitre I, le phénomène de drainage est basé sur le changement de la polarité de la couche électrique double, à la suite de la mise de la construction au potentiel de la terre.

Afin que ce phénomène puisse se produire, les électrodes doivent avoir un certain diamètre et se trouver à une distance conviviable entre elles.

Dans ce qui suit seront présentées les prémisses du calcul formulées par un nombre d'auteurs.

tère variante (Moraru 1963)

On impose la condition de l'égalité entre la quantité d'électricité qui passe dans l'unité de temps par la surface entre deux électrodes et par l'électrode afférente. Par la fermeture, un courant électrique se forme à travers la pile créée du circuit construction-terrain. On écrira (fig. 30) que la résistance électrique du prisme d.1.t., dans le sens vertical (Rz) doit être égale à la résistance électrique de l'électrode dans le sens horizontal (R). On a pris en compte le prisme ayant la hauteur de l'électrode, car le phénomène d'inversion de la polarité intervient seulement à ce niveau, le drainage s'effectuant par gravité, à la suite de l'état de dépression produit à partir de ce niveau; de même, la résistance électrique de la maçonnerie se maintient constante à ce niveau, l'humidité étant aussi constante.

\[
R_z = \rho_a \frac{t}{k \cdot d_p} = \frac{\rho_a}{k} \cdot \frac{t}{d_p} = R_e \quad (28)
\]

où \(\rho_a \) est la résistivité de l'électrolyte en \(\Omega \cdot \text{cm} \) (l'eau) \(\rho_e \) est la résistivité de \(\Omega \cdot \text{cm} \) de l'électrode, \(p \) est la porosité de la maçonnerie en %.

Pour prévenir l'influence des imperfections du contact électrique et du fait qu'on a négligé dans les calculs la résistance de certains circuits, on devra considérer dans le calcul un coefficient de sécurité \(n = 3 \).

\[
R_z = \frac{R_e}{n} = \frac{\rho_a}{k} \cdot \frac{t}{d_p} = \rho_e \frac{t}{d_p} \quad (29)
\]

\[
R_z = \frac{R_e}{n} = \rho_a \frac{t}{k \cdot d_p} = \rho_e \frac{t}{d_p} \quad (30)
\]

\[
\rho_a \frac{t}{d_p} = \rho_e s \quad (31)
\]

\[
d = \frac{K}{n} \quad (32)
\]

avec \(t = 2r \) et \(\rho_a / \rho_e = K \). Il en résulte

\[
d = \frac{K}{n} \cdot \frac{s}{t} \quad (33)
\]

En vue de simplifier le calcul on a donné dans le tableau suivant les valeurs du rapport \(K \) pour différentes conductibilités de l'eau et différentes natures de l'électrode (les valeurs doivent être introduites dans le calcul, multipliées par \(10^{-6} \) ou \(10^{-5} \)).

<table>
<thead>
<tr>
<th>(\rho_a (\Omega \text{ cm}))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>1.75 \times 10^{-6}</td>
<td>0.57</td>
<td>1.14</td>
<td>1.71</td>
<td>2.28</td>
<td>2.65</td>
<td>3.42</td>
<td>3.99</td>
<td>4.56</td>
</tr>
<tr>
<td>Al</td>
<td>1.87 \times 10^{-5}</td>
<td>0.35</td>
<td>0.77</td>
<td>1.05</td>
<td>1.40</td>
<td>1.75</td>
<td>2.10</td>
<td>2.45</td>
<td>2.80</td>
</tr>
<tr>
<td>Fe</td>
<td>4.3 \times 10^{-5}</td>
<td>0.233</td>
<td>0.466</td>
<td>0.699</td>
<td>0.942</td>
<td>1.165</td>
<td>1.398</td>
<td>1.631</td>
<td>1.864</td>
</tr>
<tr>
<td>Acier (armature)</td>
<td>6 \times 10^{-5}</td>
<td>0.166</td>
<td>0.332</td>
<td>0.498</td>
<td>0.664</td>
<td>0.830</td>
<td>0.996</td>
<td>1.162</td>
<td>1.328</td>
</tr>
</tbody>
</table>

Exemple : Soit à calculer la distance entre les électrodes pour une maçonnerie d'un mètre de largeur, drainée par des électrodes en cuivre \(\varnothing \) 10 mm - \(S = 0.78 \text{ cm}^2 \) - ayant une porosité
p 30 % avec \(\rho = 1 \) \(\Omega \) cm.

\[
d = \frac{1}{3} \frac{0.57 \times 10^{-6} \times 0.7 \times 1}{0.3 \times 10^2} = 49.5 \approx 50 \text{ cm}.
\]

2ème variante (Fridman 1964).

Fridman considère l'ensemble construction humidifiée - terrain et électrodes (la maçonnerie et le terrain) comme une pôle électrique. On tient compte de la force électromotrice formée entre le groupe d'électrodes montées dans la maçonnerie et l'électrode correspondant au terrain (la mise à terre).

En appliquant les lois de Kirchhoff au groupe d'électrodes montées dans le mur, auquel correspond une seule électrode pour la mise à la terre, on détermine les éléments nécessaires pour le projet. Le pas des électrodes montées dans le mur sera déterminé en écrivant que la pression électrosomotique d'écoulement, correspondant à une électrode qui produit un courant électrosomotique d'intensité 1, est plus grande que la pression de la colonne de liquide en état d'équilibre ascendant (capillaire + électrosomotique).

Fridman apres comme base pour déduire ses relations, l'observation de Likow, selon laquelle les pressions électrosomotique et capillaire ont des sens opposés après l'établissement de l'état d'équilibre.

On déduit ainsi l'intensité du courant en fonction d'un coefficient de sécurité \(n = 1 + 5 \), semblable à celui utilisé par nous (la méthode exposée dans le paragraphe précédent).

\[
I = \frac{(1 + 5)}{\varepsilon} \frac{r_c^3}{\varepsilon_c \varepsilon}
\]

où \(\varepsilon \) : est la surface sur laquelle s'est fixée la phase liquide, \(r_c \) et \(\varepsilon_c \) sont, respectivement, le rayon et la longueur du capillaire.

La baisse du niveau de l'eau en partant du centre de l'électrode, peut être calculée à l'aide de l'expression :

\[
x = \frac{2 K_e 1 t}{\varepsilon^2 r_c^2}\]

où \(t \) est le temps en secondes.

Le rayon du capillaire peut être déterminé à l'aide de la formule de Reltow, déduite de la loi de Poiseuille.

\[
r_c = a \sqrt{\frac{K}{\rho}}
\]

\[
r = \sqrt{\frac{8 K \eta}{\varepsilon}}
\]

(a est un coefficient fonction de la viscosité).

Les sections des électrodes peuvent être déduites à l'aide d'une des formules :

\[
s = \frac{q t}{U K_e t} \text{ ou } s = \frac{r^2_c d^2}{16 K_e} 1 t
\]

La force électromotrice de la source de courant est donnée par l'expression :

\[
U = \frac{1 t}{\pi r_c^2} \chi
\]

par :

\[
q = \frac{\pi d^2 t^2}{16}
\]

La méthode de Fridman est la première à inclure en détail les paramètres du phénomène, mais néglige le problème de la mise à la terre.

En introduisant les données physiques dans les formules de Fridman, on obtient des résultats paradoxaux pour les valeurs du débit (q) et de la tension (U).

Exemple. L'exemple du paragraphe précédent est recalculé à l'aide des formules de Fridman, en admettant une différence naturelle de potentiel de 0,3 V, \(K_e = 0.5 \times 10^{-5} \text{ cm}^2/\text{sec} \), et un temps de séchage de 100 jours, qui est pratique pour ces paramètres.

Le débit électrosomotique proposé est de 0,1 cm³/sec.

\[
S = \frac{0.1 \times 100}{0.3 \times 0.5 \times 10^{-5} \times 1.05 \times 10^7} = 0.636 \text{ cm}^2
\]

\(\phi = 9 \text{ mm} \).

En calculant par (37) la section de l'électrode, on peut déduire la distance entre les conducteurs, si on admet une intensité de \(0.5 \times 10^{-6} \text{ A/cm}^2 \) et \(\pi = 0.5 \times 10^{-1} \text{ W}^{-1} \text{ cm}^{-1} \).

\[
r_c = \sqrt{8 K \eta} = \sqrt{8 \times 10^{-5} \times 0.04} = 1 \times 10^{-3} \text{ cm}
\]

\[
r = \sqrt{\frac{8 K \eta}{\varepsilon}} = 9.86 \times 10^{-3} \text{ cm}
\]

\[
d = \frac{\pi^2 r_c^2}{16} \text{ t} \text{ p} \text{ n} \]

\[
\sqrt{16 \times 0.63 \times 0.5 \times 10^{-5} \times 1.05 \times 10^7 \times 0.5 \times 10^{-4}} = 42 \text{ cm}
\]

\[
9.86 \times 10^{-3} \times 100 \times 0.3 \times 0.5 \times 10^{-1} = 15 \text{ cm}
\]
Les valeurs obtenues correspondent à celles de la pratique, mais par contre celles données pour le débit et pour la tension conduisent à des valeurs paradoxales.

3ème variante (Moraru 1967).

Par cette méthode de calcul on tient compte de l'effet de la prise de terre qui conditionne en grande mesure la création du courant électroosmotique du drainage passif.

En principe l'intensité du courant drainé par les électrodes doit être inférieure à l'intensité du courant que la prise de terre est capable de drainer.

La résistance de la prise de terre peut être calculée à l'aide de la formule de Dwight :

\[
R_p = \frac{164 \rho_1}{\pi \ln \frac{d_2}{d_1} - 2} \quad \text{et} \quad R_p = \frac{164 \rho_1}{\pi \ln \frac{L}{d_1}} + \frac{L}{d_1} \quad \text{et} \quad R_p = \frac{164 \rho_1}{\pi \ln \frac{L}{d_2}} - 2 + \frac{2h}{d_2}
\]

où \(\rho_p \) est la résistivité du sol en \(\Omega \cdot m \),
\(\rho_1 \) est la résistivité du matériau spécial de remplissage,
\(L \) est la longueur de la barre (en mètres),
\(h \) est la profondeur du centre de gravité de la barre, rapportée au niveau du sol (en mètres),
\(d_1 \) est le diamètre du matériau spécial de remplissage (en mètres),
\(d_2 \) est le diamètre de la barre.

La résistivité du sol est fonction de sa nature et de l'humidité; la variation est très grande, par exemple entre 1 et 15'000 \(\Omega \) cm. En principe, la résistivité peut être représentée par une courbe d'équation \(\rho = f(w) \), laquelle a pour les divers sols une allure comparable (fig. 33). Ainsi, à titre indicatif, les résistivités des divers sols humides, varient ainsi :

- argiles 400-800 \(\Omega \) cm
- argiles poussiéreuses 100-1600 \(\Omega \) cm
- poussières sableuses 1500-3500 \(\Omega \) cm
- le sable des plages à proximité de la mer 2500 \(\Omega \) cm.

Pour les terrains à humidités plus grandes que l'humidité moléculaire maximum, mais inférieure à la limite supérieure de plasticité, les résistivités sont les suivantes :

- terres argileuses 100-1000 \(\Omega \) cm
- argiles carbonatées 2000-3000 \(\Omega \) cm
- argiles poussiéreuses 1000-1500 \(\Omega \) cm
- terres poussiéreuses 1500-3500 \(\Omega \) cm

Mais dans les calculs d'électrodrainage, on doit introduire
la résistivité moyenne, qui varie pendant le processus de chage,
\[\rho' = m \rho \]

Les valeurs du coefficient "m" sont les suivantes
- terres argileuses \(m = 1,0 \)
- argiles poudreuses \(m = 1,2 \)
- terres poussiéreuses \(m = 1,5 - 2,0 \)

Sachant que l'intensité du courant de la prise de terre est:
\[I_p = \frac{U}{R_p} \text{ avec } U = \frac{K_e h}{\eta \gamma} \]
et l'intensité du courant sur l'électrode est
\[r = \frac{K_e \gamma}{\eta \rho_z} d l \]

Le rapport entre les deux valeurs représente le coefficient de sécurité pour le fonctionnement de l'installation
\[n = \frac{I_p}{I_e} \]

Par contre, la densité du courant \(j_e \) sur l'électrode doit être plus grande que sur la prise de terre \(j_p \), car la prise de terre correspond à un nombre d'électrodes qui coïncident le courant électroosmotique formé par voie naturelle, par le changement de la pulsation naturelle.

Les conditions sont compatibles, car en notant :
\[j_e > j_p \text{ avec } j_e = \frac{I_e}{S_{e}} \text{ et } j_p = \frac{I_p}{S_{p}} \]
et en tenant compte de (43) et de (44), il en résulte
\[\frac{I_e}{S_{e}} > \frac{I_p}{S_{p}} \]
d'où la compatibilité. c. à. d. \[S_{p} > n S_{e} \]

La condition de la densité du courant, fournit le nombre d'électrodes correspondant à une prise de terre donnée,
\[j_e = \frac{1}{S_{e}} \text{ avec } S_{e} = 2 \pi r l \]
\[j_p = \frac{1}{S_{p}} \text{ avec } S_{p} = \pi d_{1} L \]

Le nombre \(n_e \) d'électrodes correspondant à une prise de terre, est donné par :
\[j_e = \frac{n_e}{j_p} \]

Exemple.

Soit à calculer l'installation d'électrodrainage passif pour une construction ayant une hauteur d'humidité de 1 m et qui présente les paramètres physiques suivants :

\[\rho_z = 2 \times 10^{4} \Omega \text{ cm} ; \quad \rho_{c} = 1,8 \times 10^{-6} \Omega \text{ cm} ; \quad K_e \rho = 2000 \Omega \text{ cm} = 20 \Omega \]

\[\rho_{1} = 500 \Omega \text{ cm} = 5 \Omega \text{ m} \quad K_{e} = 0,5 \times 10^{-5} \text{ cm}^{2} / \text{sec} ; \quad \eta = 0,01 \text{ poises} \]

\[r = 0,4 \text{ cm} ; \quad d = 50 \text{ cm}, l = 100 \text{ cm} \quad L = 200 \text{ cm}, d_{1} = 100 \text{ cm}, \quad d_{2} = 2 \text{ cm}, h = 100 \text{ cm} \]

\[R_p = \frac{1,64 \times 5}{3,14 \times 2} \ln \left(\frac{1}{0,02} \right) + \frac{1,64 \times 20}{3,14 \times 2} \ln \left(\frac{18 \times 2}{4} + \ln \left(\frac{2}{4} - 2 \right) + 2 \times 4 \right) = 32,55 \]

\[U = \frac{K_{e} h}{\eta \gamma} = \frac{0,5 \times 10^{-5} \times 0,01}{981} = 2 \text{ V} \]

\[S_{p} = \frac{d_{1} \cdot L}{3,14 \times 1 \times 2} = 6,28 \text{ m}^{2} = 6,28 \times 10^{4} \text{ cm}^{2} \]

\[p = \frac{U}{R_{p}} = \frac{2}{32,35} = 6,17 \times 10^{-2} \text{ A} \]

\[e = \frac{K_{e} \gamma}{\eta \rho_{z}} d l = \frac{0,5 \times 10^{-5} \times 50 \times 100}{981} = 5,1 \times 10^{-2} \text{ A} \]

\[5,1 = \frac{1,64 \times 5}{3,14 \times 2} \ln \left(\frac{1}{0,02} \right) + \frac{1,64 \times 20}{3,14 \times 2} \ln \left(\frac{18 \times 2}{4} + \ln \left(\frac{2}{4} - 2 \right) + 2 \times 4 \right) = 32,55 \]

Le nombre d'électrodes correspondant à une prise de terre peut être déterminé par la densité du courant :

\[j_e = \frac{K_{e} \gamma d}{2 \pi r K_{e} \eta \rho_{z}} = \frac{10^{-5} \times 50 \times 1}{2 \times 3,14 \times 0,4 \times 0,5 \times 10^{-5} \times 0,01 \times 2 \times 10^{4} \times 981} = 2,02 \times 10^{-4} \text{ A/cm}^{2} \]

\[j_p R_{p} = \frac{2}{32,35 \times 6,28 \times 10^{4}} = 0,03 \times 10^{6} \text{ A/cm}^{2} \]

\[10 \text{ cm}^{2} \]
En tenant compte des imperfections du contact et de la variation de la résistivité pendant le processus d'électrodrainage, comme nous avons procédé jusqu'à présent pour toutes nos méthodes de calcul exposées plus haut, le nombre d'électrodes obtenu théoriquement et pouvant correspondre à une prise de terre, doit être réduit en le divisant par un coefficient de sécurité.

Le nombre réel d'électrodes \(n' \) est donné par (49)

\[
(49) \quad n'_e = \frac{n_e}{c} = \frac{202}{10} = 20 \text{ électrodes.}
\]

Une voie intéressante pour les recherches restant à effectuer, sera : les expériences conduisant à la réduction de ce coefficient de sécurité, et à un nombre d'électrodes inférieur à celui confirmé par les applications actuelles de la méthode.

Pour nos propres expériences effectuées à notre regret sur un nombre réduit de bâtiments, nous avons adopté pour certaines zones un plus grand nombre d'électrodes à une seule prise de terre, ce qui nous permet d'entrevoir la possibilité de réduire ce coefficient à 4-5, c. à. d.

\[
\frac{n'_e}{c} = \frac{202}{5} = 40 \text{ électrodes/1 prise.}
\]

4 Installations mixtes d'électrodrainage
(Méthode Moraru)

En combinant convenablement l'électrodrainage actif et passif en vue de l'application aux constructions humides, on peut utiliser d'abord la méthode active pour le séchage proprement dit et ensuite à titre préventif contre des nouvelles invasions de l'eau, la méthode passive. On peut obtenir ainsi des effets très favorables dans un intervalle de temps extrêmement court.

En principe on monte à l'extérieur du bâtiment les électrodes négatifs du drainage, formés de tuyaux perforés, et à l'intérieur les électrodes positives (fig. 22, 34 et 35); les électrodes peuvent être montées soit en deux rangées superposées sur la même verticale ou décalées), une différence de niveau entre eux pouvant stimuler par gravité le courant électroosmotique, ou bien, et c'est préférable sur le même plan, comme dans le schéma de la fig. 22 a.

Après le séchage de la construction, par électrodrainage actif les deux rangées d'électrodes sont connectées entre elles et

\[
166
\]
Contact pour la mise à la terre, après l'assecnement actif

Fig. 35
2. Les électrodes en acier-béton pour la paroi.

L'utilisation de l'acier-béton pour les électrodes est une solution qui facilite considérablement les efforts pour se procurer les matériaux nécessaires. Ioachim Genecl recommande des électrodes avec un diamètre de 12 mm, découpées au préalable, fixées à une distance de 30 cm et montées à une profondeur de 60 cm. Les électrodes sont connectées avec une cimente ayant un diamètre de 12 mm, également en acier-béton. L'auteur cite plus haut, recommande de grouper environ 50 électrodes à une prise de terre confectionnée d'une tôle de 400 x 400 x 10 mm, installée à 2 m de profondeur. Les orifices pour le montage des électrodes seront remplis (avant de fixer les électrodes) avec du mortier de ciment portland, ayant la composition suivante :

- ciment portland P 300 ayant un dosage de 225 kg/m³ 5% plâtre /m³ ;
- sable correspondant à la courbe granulométrique F,
sans dépasser 3 mm ;
- le rapport ciment/sable 1/4
- consistance plastique

3. Autres types d'électrodes.

Si l'agressivité de la maçonnerie humide n'est pas de nature à créer des conditions défavorables, on peut utiliser aussi des électrodes en aluminium; ce matériau sera d'ailleurs employé dans tous les cas, pour confectionner les ciments de liaison entre les électrodes.

En l'absence des conducteurs ayant le diamètre et la section résultats du calcul, on peut confectionner les électrodes aussi avec des fils tressés (2-3 fils) ou des câbles correspondants.

Les électrodes négatives montées dans la paroi seront exécutées en tubes (cuivre, acier, etc.) dont la partie extérieure est perforée; la surface des orifices sera d'environ 35-40 % de la surface latérale et le diamètre d'un orifice de 3-6 cm. Le montage et leur protection n'a rien de spécial.

4. Les prises de terre.

La largeur des prises de terre varie considérablement avec l'importance de l'installation et la durée de fonctionnement.

Les plus simples sont les prises en tôle d'acier placées à la profondeur de la nappe d'eau souterraine, dans une couche de charbon de bois qui dépassera la tôle d'environ 20 cm dans toutes les directions.
On peut utiliser aussi des tuyaux en acier galvanisé ayant un diamètre d'environ 2", fixés dans la terre sans aucune préparation spéciale. La longueur des tubes sera d'environ 3 m.

Dans le cas des électrodrainages d'arum, les prises de terre seront du type de celles utilisées pour la protection cathodique des constructions métalliques ; les données portant sur ce type de prises de terre peuvent être trouvées dans les ouvrages spécialisés.

Les compositions dépolarisantes.

Dans le cas de l'électrodrainage passif le processus électrique est similaire à celui d'une pile, ce qui amène l'apparition des effets correspondants aux électrodes, connus sous le nom de polarisation : la cathode devient avec le temps plus positive et l'anode plus négative, tendant vers la fin à l'égalisation des tensions, c'est-à-dire à l'annihilation de la force électromotrice. On connaît deux types de polarisation : de concentration et chimique. La dépolarisation, le phénomène contraire à la polarisation, peut être produit par voie physique ou chimique. L'agitation de l'électrolyte et l'élévation de la température ne peuvent pas intervenir dans un milieu poreux et par conséquent la seule possibilité reste la dépolarisation chimique. Le processus cathodique étant une réduction, la polarisation cathodique peut être réduite à l'aide d'une substance oxydante qui assure la réoxydation des produits de réduction.

O. M. Fridman recommande l'emploi d'une composition antipolarisante pour les électrodes en cuivre, préparée avec du sulfate de cuivre et de l'argile à granules fines, en proportion égale et de l'eau, pour obtenir un mastic plastique qu'on presse dans les orifices pratiqués pour les électrodes. Dans le cas des électrodes de charbon le dépolarisant sera le peroxyde de manganèse.

6. Méthodes nouvelles pour la réalisation des installations d'électro-drainage actif et passif.

Les méthodes connues d'électrodrainage (tandis que passives) ont le désavantage d'imposer l'exécution de certaines prises de terre spéciales. De même, elles présentent le désavantage d'éliminer l'humidité des capillaires des matériaux de construction, uniquement par la migration électroosmotique, vers le terrain où sont montées les prises (les électrodes négatives) dans une mesure plus réduite et surtout vers l'atmosphère qui est une voie plus directe. La méthode active habituelle a l'inconvénient de faciliter l'apparition de certaines efflorescences de sel, si l'intensité et la tension du courant n'est pas limitée. Ces deux méthodes, présentent le risque de la corrosion des électrodes avec le temps, si on néglige de prendre des mesures spéciales. La méthode active est seulement une méthode de lutte contre l'humidité, tandis que la méthode passive est une méthode de combat et de prévention.

Ces désavantages peuvent être éliminés par l'électrodrainage d'une construction à l'aide de la méthode active, les électrodes positives de même que celles négatives étant montées dans le mur (fig. 36 a-c); on remplace toutes les prises de terre par des électrodes positives, barres métalliques pleines ou cartouches, qui seront décrites dans le paragraphe suivant, et des électrodes négatives en tuyaux métalliques perforés ou des cartouches tubulaires, montés alternativement et liés par des circuits séparés pour chaque polarité, au niveau 0,86 d du terrain (où d est la distance entre les électrodes). Ceci permet l'élimination de l'humidité directement dans l'atmosphère.

Le dimensionnement de l'installation sera estimé en fonction des paramètres physiques de l'installation et de la maçonnerie (la résistance R (Ω) et la résistivité de la maçonnerie ρ (Ω cm), la distance entre les électrodes d (cm), le rayon de l'électrode r (cm), la longueur de l'électrode l (cm), le coefficient électroosmotique de la maçonnerie k_e (cm²/sec V) le volume d'eau à drainer V_e (cm³), la tension du courant U(V), le temps de séchage t (sec), le coefficient de sécurité de fonctionnement de l'installation c), à l'aide desquels on établit la distance d entre les électrodes et le temps de séchage t, conformément aux formules:
Le risque de la formation des efflorescences de sels, dû au fonctionnement de l'installation, est éliminé par la limitation de la densité \(j \) du courant utilisé, à moins de 2 m A/cm², en recommandant qu'elle soit comprise généralement entre 0,1 - 1,0 A/m², et à laquelle correspond une tension donnée par l'expression :

\[
U = j \cdot \rho \cdot d
\]

Dans l'électrodrainage d'une construction par la méthode passive, les électrodes fixées dans le mur sont tubulaires (tuyaux perforés ou cartouches perméables à l'humidité), montées à la partie inférieure de la zone envahie, et liées à la prise de terre ; ces électrodes permettent une élimination plus rapide de l'humidité grâce à leur ventilation (fig.39). Le dimensionnement des installations respectives est estimé en fonction des paramètres physiques de l'installation et de la maçonnerie (la résistance de la prise de terre \(R_p \) (\(\omega \)), la hauteur de l'humidité par rapport au niveau du terrain \(h \) (cm), le coefficient de filtration hydraulique \(k \) (cm²/sec.V), le coefficient de perméabilité électroosmotique \(k_p \) (cm²/sec.V), la viscosité de l'eau migratrice \(\eta \) (poise), la résistivité de la maçonnerie \(\rho_1 \) (\(\Omega \) cm), la distance entre les électrodes \(d \) (cm), le rayon des électrodes \(r \) (cm), la longueur de l'électrode \(l \) (cm), la surface latérale de la prise de terre \(S_1 \) (cm²), le nombre d'électrodes correspondant à une prise de terre \(\eta_0 \), le coefficient de sécurité \(c \) de fonctionnement de l'installation à l'aide dequels on établit la distance \(d \) et le nombre d'électrodes \(\eta_0 \), correspondant à une prise de terre, et notamment par les relations :

\[
d = \frac{K_p \cdot \eta_0}{981 K \cdot \gamma \cdot l}
\]

\[
\eta_0 = \frac{1}{c} \cdot \frac{c}{2 \pi r \cdot h}
\]

Dans l'électrodrainage d'une construction par la méthode mixte, en vue de contrecarrer l'éventualité des nouvelles invasions d'humidité, l'installation d'électrodrainage actif, décrite plus haut, peut devenir après le séchage du bâtiment, installation d'électrodrainage passif, en reliant les électrodes positives et négatives à des prises de terre.

Les avantages de ces nouvelles méthodes sont
dans le cas de l'électrodrainage actif on a réussi à éliminer les prises de terre, en général difficiles à exécuter et à accélérer le drainage de l'humidité, directement dans l'atmosphère, par l'intermédiaire des électrodes tubulaires négatives ventilées.

dans le cas de l'électrodrainage passif, on a réussi à accélérer le séchage, par rapport à la méthode de l'électrodrainage passif commun, en remplaçant les électrodes pleines par des électrodes tubulaires ventilées augmentant ainsi les voies d'élimination de l'humidité;

on peut combiner l'électrodrainage actif avec l'électrodrainage passif dans une méthode mixte, en vue d'accélérer le séchage. L'installation d'électrodrainage actif, est reliée après la fin du séchage de la construction, à la prise de terre et devient ainsi une installation passive, donc une installation de prévention contre les éventuelles nouvelles invasions d'humidité,

dans le cas de l'électrodrainage actif ainsi que l'électrodrainage passif, on a réussi, en utilisant des électrodes - cartouches, à empêcher la corrosion des électrodes à l'aide du mélange dépolarisant et à améliorer le contact électrique par la forme de l'électrode, (en spirale ou à tamis);

dans le cas de l'électrodrainage actif on a réussi à empêcher la formation des efflorescences des sel, par la limitation de la tension et de l'intensité du courant;

la nature de l'électrode ne sera pas limitée mais on adoptera pour chacune le mélange dépolarisant correspondant;

on a pu établir des méthodes pour le dimensionnement des installations d'électrodrainage actif ou passif, qui tiennent compte des paramètres physiques de l'installation et du mur;

en général, par les méthodes préconisées on réduit le temps de mise en fonction des installations d'électrodrainage; le prix de l'installation baisse d'environ 50% de même que le temps de fonctionnement proprement dit, le séchage étant obtenu environ 3 fois plus vite; on obtient donc un rendement nettement supérieur par rapport aux méthodes connues.

7. Méthodes nouvelles pour l'exécution des électrodes.

En vue d'éviter le danger de la corrosion des électrodes et pour améliorer le contact électrique, les électrodes utilisées pour l'électrodrainage actif et passif, peuvent être confectionnées sous forme de cartouches de mélanges dépolarisants, en fonction de la nature de l'électrode; par exemple:
pour l'électrode en cuivre, le mélange dépolarisant est composé de poudre d'argile (approx. 50%), poudre de sulfate de cuivre (approx. 20%), ciment portland (approx. 30%);

- pour l'électrode en barres de graphite, le mélange dépolarisant est composé de pyrolusite - MoO₃ - (approx. 20%), permanganate de potassium - MnO₄⁻ K⁺ - (approx. 20%), poudre de graphite (approx. 40%), clorure d'ammonium - NH₄Cl - (approx. 0.5%) ciment portland (approx. 20%);

- pour des électrodes en acier-béton, le mélange dépolarisant est composé de ciment portland (approx. 60%) et de poudre de graphite (approx. 40%).

Dans chacun de ces mélange on ajoute de l'eau, afin d'obtenir un mastic plastique, pouvant être coulé sous forme de cartouches, comme suit :

- pour des électrodes positives (fig. 40) sous forme de cartouches cylindriques avec un diamètre de 40 mm, qui englobe à l'intérieur une spirale en fil de cuivre, d'acier, d'aluminium, ou une tige de graphite, le diamètre du fil étant d'approx. 3-4 mm, le pas de la spirale d'approx. 10 mm, le diamètre de la spirale d'approx. 25 mm, la longueur de la cartouche étant les 2/3 de l'épaisseur du mur;

- pour des électrodes négatives (fig. 41), en forme de cartouches cylindriques tubulaires, avec un vide intérieur cylindrique, d'approx. 15 mm diamètre, ayant à l'intérieur de la paroi une spirale en fil de cuivre, acier ou aluminium, le diamètre du fil étant d'approx. 3-4 mm, le pas de la spirale d'approx. 10 mm, le diamètre de la spirale d'approx. 28 mm, la longueur étant 2/3 de l'épaisseur de la paroi, ou un tamis en fil de mêmes métaux; les électrodes négatives peuvent être encore confectionnées en tuyaux métalliques d'acier zingué (fig. 42), perforés sur la surface latérale, la surface des trous étant 45% de la surface totale; ces tuyaux sont fixés dans le mur, entourés par le mélange dépolarisant respectif.

CHAPITRE IV. SUR LA POSSIBILITE D'UTILISER DES METHODES ELECTROCHIMIQUES POUR LES MACONNERIES DESAGREGÉES.

Dans la technique des travaux de fondation on connaît différentes méthodes d'améliorer la résistance du terrain par des procédés électrochimiques. Parmi les plus importants nous citons :

- le procédé à électrodes d'aluminium, utilisé par un nombre ap- précis de chercheurs, comme par exemple Endell (1935), Erenbach (1936), Casagrande (1937), Goldstein (1937), Tolstoi (1940), Belot (1941), Cebertowicz (1952), Murayama (1953), Vig (1953), etc.;

Le procédé d'amélioration par électro silicatation, qui a été illustré spécialement par Casagrande (1939), Tolstoi (1940), Cebertowicz (1948), Rjanitzin (1949), etc.

Si l'on tient compte de la structure semblable à celle des maçonnneries en brique et des mortiers anciens, on peut considérer comme possible d'utiliser les méthodes connues pour les travaux de fondation, en les adaptant rationnellement.

Dans les paragraphes suivants nous allons donner des indications sur la possibilité d'appliquer les méthodes électrochimiques aux travaux de consolidation des murs, indications qui nécessitent une vérification pratique de plusieurs années et dans cette phase de développement des problèmes, représentant seulement l'analyse théorique, et enfin, quelques indications en vue de définir leur domaine d'application.

a) La consolidation (le durcissement) à l'aide des électrodes d'aluminium.

La maçonnerie contient des anions (A⁻) et des cations (C⁺) de même que de l'eau adsorbée.

Par le passage du courant continu, les cations C⁺ (Na⁺, K⁺, Ca⁺, Al⁺⁺⁺, etc.) migrent vers l'anode et s'amassent là; le gaz H₂ s'élimine d'après la réaction suivante :

\[\text{C}⁺ + 2 \text{e} + \text{H}_2\text{O} \rightarrow 2 \text{CO} \text{H} \rightarrow \text{H}_2 \uparrow \]

Par ce processus le contenu en sel alcalins augmente dans la zone cathodique (NaOH, KOH), de même que la valeur du pH.

Les anions n⁻ (SO₄⁻, Cl⁻, CO₃⁻, etc.) migrent vers l'anode, où le contenu en O₂ et Cl₂ baisse et le matériau prend un caractère acide, conformément à la réaction :

\[\text{2A}⁻ + 2 \text{e} \rightarrow \text{A}_2 \uparrow \text{ ou} \]

\[\text{2A}⁻ + 2 \text{e} + 2 \text{H}_2\text{O} \rightarrow 2 \text{H}_2 \text{A} + \text{O}_2 \uparrow \]

A part ces réactions, dans la masse de la maçonnerie migrent depuis les anodes d'aluminium, des ions de Al⁺⁺⁺, ainsi dans la zone anodique, coexistent dans l'eau Al⁺⁺⁺ et H⁺. Dans la zone cathodique coexistent Al⁺⁺⁺, OH⁻ et AlO₂⁻ (aluminate)
parce que du côté alcalin de la cathode, Al$^{+++}$ se lie à OH$^-$ conformément à la réaction

\[(59) \quad Al^3^+ + 4 OH^- \rightarrow AlO_2^- + 2H_2O.\]

Al$^3^+$ ayant un caractère amphothère, il coagule dans la zone neutre; empêchant les migrations par l'élément.

Les ions de H$^+$ et Al$^{+++}$ de la zone anodique et OH$^-$ et AlO$_2^-$ de la zone cathodique ne peuvent continuer leur migration que par diffusion :

\[(60) \quad Al^3^+ + 3 OH^- \rightarrow Al(OH)_3\]

\[(61) \quad AlO_2^- + H^+ + H_2O \rightarrow Al(OH)_3\]

Pour ce processus, la zone cimentée s'agrandit, Al(OH)$_3$ étant drainé par l'effet thermique Joule et par l'électroosmose. C'est ainsi que, par un processus de déséhydration décrit par la réaction :

\[(62) \quad Al(OH)_3 + AlO(OH) \rightarrow Al_2O_3\]

- H$_2$O

se forme la bauxite Al(OH)$_3$ et Al$_2$O$_3$.

Cette déséhydration continue aussi après l'interruption du courant, car Al O (OH) et Al$_2$O$_3$ sont stables et insolubles et peuvent cimenter le matériau.

Dans le cas des maçonneries on peut utiliser des barres pleines en aluminium et aussi des tuyaux du même matériau.

Les barres pleines et les tuyaux sont fixés à une distance convenable résultant du calcul, comme on montrera plus bas.

Pour le traitement de la maçonnerie on peut utiliser les schémas des fig. 1 et 2, c. à d., la liaison des électrodes, soit par des circuits horizontaux (fig. 43), ou par des circuits verticaux (fig. 44).

La gamme des tensions et des intensités utilisées à l'exécution des foundations ne peut pas être employée dans les cas faisant l'objet de notre étude, parce que l'ampleur dimensionnelle est de beaucoup plus réduite.

Ainsi, Léo Casagrande, recommande pour des coefficients de filtration électroosmotique $k_e = 10^{-5}$ cm2/sec/V une tension au dessous de 100 V (0,33 V/cm) et une distance de 3-10 m. entre les électrodes; Zitowitch recommande des tensions comprises entre 0,1-1 V/cm, des intensités jusqu'à 10 A et préconise des consommations d'électricité de 30 kWh/m3.

Franks recommande pour le calcul de la distance entre les rangées d'électrodes, la formule de Zitowitch :

\[(63) \quad D = \frac{100 U}{10^{3} \varphi}\]

dans laquelle φ est un coefficient fonction du rapport des distances (fig. 45):

$\varphi = 2$ si $D > d$

$\varphi = 3$ si $D < d$

Le même auteur déduit une expression pour l'intensité nécessaire du courant:

\[(64) \quad I = \frac{\pi D U}{\rho t} \left(\frac{1}{ln \frac{D}{r_a}} + \frac{1}{ln \frac{D}{r_c}} \right)\]

ρ et τ sont respectivement le rayon de l'anode et de la cathode.

Exemple,

Soit à calculer la distance entre les rangées d'électrodes pour une maçonnerie avec $\rho = 10^4$ Ω cm

- On choisit D et d égales à 50 cm, $r_a = r_c = 20$ mm et $\varphi = 3$, de même que $U = 60$ V.

L'épaisseur du mur étant 100, $t_a = 65$ cm

\[-3,14 \times 65 \times 60 \times 1 \frac{1}{10^4} \frac{1}{ln \frac{60}{20}} + \frac{1}{ln \frac{60}{20}} = 0,756 \sim 0,8 \text{ A}\]

b) La consolidation (le durcissement) des maçonneries par électrosilicatisation.

En principe l'électrosilicatisation représente la cimentation des particules de briques, de mortiers et de bétons désagrégés, par du gel de biphosphate de silicium, resultant de l'embibition de la maçonnerie avec du silicate de sodium, introduit à l'aide du courant électrique. Le biphosphate de silicium est séparé à l'aide d'un électrolyte introduit en même temps que le silicate de sodium, d'habitude le chloreur de calcium; le courant électrique à en même temps un effet favorable de cimentation.
D'après Rjaimitzin, le processus chimique se développe par rapport à la réaction donnée par :

\[
\begin{align*}
(65) \quad & \text{Na}_2\text{O} \cdot n \text{SiO}_2 + \text{Ca} \cdot \text{Cl}_2 + n \text{H}_2\text{O} = \text{Na}_2\text{SiO}_4 + \text{Ca} \cdot \text{Cl}_2 + n \text{H}_2\text{O} \\
(66) \quad & n \text{Ca} \cdot (\text{OH})_2 + \text{CaCl}_2 \cdot (n-1) \text{H}_2\text{O} = n \text{CaO} + \text{CaCl}_2 + n \text{H}_2\text{O}.
\end{align*}
\]

Le processus est assez lent et dure au moins dix jours et le durcissement intervient à la suite de la cimentation des particules de gel de silicium, et sous l'influence de l'hydrate de calcium, formé sur la pellicule de gel de silicium. Le Professeur Cebertowicz montre que l'électro-silicisation peut être appliquée avec succès dans le cas des matériaux ayant un coefficient de filtration inférieur à 10⁻⁷ cm/sec. D'après le même auteur les différentes méthodes d'électro-silicisation peuvent être appliquées entre les limites suivantes des coefficients de perméabilité du milieu, dans les conditions suivantes :

- silicisation par pression 80-0,1 m/jour
- électro-silicisation à deux solutions (silicate de sodium et chlorure de calcium, densité = 1,35 - 1,44)... 80 - 2 m/jour
- électro-silicisation à solution mixte (silicate de sodium + chlorure de calcium, densité = 1,19)........... 2 - 3 m/jour
- électro-silicisation avec une seule solution (silicate de sodium, densité = 1,13) 2 - 0,1 m/jour

Les quantités nécessaires de silicate de sodium et de chlorure de calcium sont fonction du volume des pores, c. à d. pour le silicate 0,3 - 0,4 du volume des pores, et le chlorure au moins égal en volume au silicate.

L'ordre d'introduction des solutions est le suivant :

- la moitié du volume du silicate
- un volume égal de chlorure
- le sens du courant est inversé après quoi on introduit le reste de silicate,
- on introduit le reste de chlorure.

Le traitement à l'aide du courant est poursuivi même après l'introduction des solutions, c. à d., jusqu'à ce que la résistivité augmente brusquement. L'humidité très accentuée empêche l'électro-silicisation et par conséquent la construction doit être préalable électro-drainée, si c'est nécessaire.

Le Professeur Cebertowicz montré que la consommation de courant est d'environ 30-40 KWh/m³.

La durée du traitement peut être déduite, en utilisant la formule de Borkow (déduite expérimentalement)

\[
(p_p =) \frac{V}{t} = k \frac{U}{p}
\]

où \(p_\text{p} \) est la résistance de la maçonnerie avant le traitement (kg/cm²)
\(p \) est la résistance après le traitement.

\(V \) est le volume du mur (kg/cm² traité) (cm³)
\(U \) est la tension du courant (V)
\(I \) est l'intensité du courant (I)

\(k \) est un coefficient de proportionnalité.

La consolidation peut être obtenue (d'après Jinkin) en utilisant seulement le chlorure de calcium, qui conduit à la cimentation de la maçonnerie dans la zone cathodique, et à sa coagulation dans celle anodique.

Après une étape d'injection, c'est recommandé d'inverser la polarité (fig. 43,44) et d'utiliser pour les anodes et les cathodes des tuyaux perforés en aluminium; la surface des perforations doit représenter environ 40% de la surface latérale.

CHAPITRE V. CONCLUSIONS ET RECOMMANDATIONS CONCERNANT L'APPLICATION DE L'ÉLECTRO-DRAINAGE AU SECHAGE DES BATIMENTS.

La méthode de l'électrodrainage est, sans tenir compte de la forme d'application (active et passive), une méthode qui donne des résultats spectaculaires et dans un intervalle de temps suffisamment court par rapport aux autres méthodes de lutte contre l'humidité connues.

Mais elle a une servitude, à savoir, qu'étant une méthode très technique, quelque simple à exécuter en apparence, elle nécessite, pour être appliquée, l'aide d'un ingénieur-projet spécialiste et d'une main-d'œuvre qualifiée.

Du contenu du rapport, il en résulte que le dimensionnement correct des installations d'électrodrainage, implique l'établissement de certains paramètres physiques pour chaque cas à part, et nécessite toujours le concours d'un laboratoire. Les applications empiriques, c. à d., celles auxquelles tout le dispositif d'électrodrainage le plus adapté, où les paramètres de l'installation (le type et les dimensions des électrodes, la distance entre les électrodes, la tension utilisée, les prises de terre, etc.) ne sont pas choisies par un spécialiste compétent, peuvent le plus souvent soit
compromettre les résultats des travaux, soit ne pas aboutir aux meilleurs résultats.

Quoiqu'exceptionnelle, cette méthode est difficile, vu sa technicité. En général, l'électrodrainage est recommandé pour des ouvrages de grande ampleur, ou pour des constructions plus petites, auxquelles les méthodes plus simples n'ont pas conduit à un résultat. Dans les formes élaborées par nous, on pourrait affirmer avec certitude que l'électrodrainage est capable de donner de bons résultats dans la plupart des cas. Les expériences réussies obtenues en Roumanie, indiquent la possibilité de l'application aux bâtiments en briques, de même qu'aux bâtiments en maçonnerie de pierre.

L'application de la méthode active par rapport aux cas connus, pour lesquels se sont produit des efflorescences dues à la trop grande vitesse de migration électroosmique, a élargi considérablement son champ d'application par la limitation de l'intensité du courant utilisé. En même temps, par l'utilisation des électrodes tubulaires perméables, à la place des électrodes pleines on réduit la voie d'élémination de l'humidité. La méthode passive, a le grand avantage d'être pratiquement, sans limite comme action, l'installation étant englobée dans le mur et invisible; le désavantage lié au danger de la corrosion des électrodes, après un temps très prolongé de fonctionnement de l'installation, est considérablement réduit par la présence des mastics dépolarisants préconisés.

Les grands avantages de l'électrodrainage, mais en même temps sa servitude, indiqués plus haut, implique la nécessité de prendre des mesures de précaution contre les applications dilétantes.

Nous proposons donc que l'ICOMOS étudie les aspects suivants :

1. Recommander l'utilisation de l'électrodrainage comme moyen de lutte contre l'humidité des bâtiments de grande ampleur ou de ceux pour lesquels d'autres procédés connus n'ont pas donné de résultats.

2. Recommander l'application des méthodes efficaces d'électrodrainage, correspondant à chaque cas pratique et basées sur une étude technique et scientifique, avant l'application et effectuée par une personne qualifiée.

3. Recommander que l'application de l'électrodrainage soit faite seulement à partir des études de laboratoire correspondant à chaque cas pratique, et que le dimensionnement soit basé sur un calcul scientifique.

4. Signaler l'application empirique de l'électrodrainage, afin d'éviter les échecs.

5. En tenant compte du fait qu'un grand nombre de monuments historiques de valeur indiscutable, souffrent d'une humidification abondante, laquelle met en danger leur durabilité pluriséculaire, il faut recommander que l'enlèvement de l'humidité soit effectué à partir des projets réalisés avec le concours des spécialistes indiqués par l'ICOMOS, et qui seront invités dans ce but, à étudier les problèmes concrets et à surveiller l'application correcte des méthodes d'électrodrainage par les entreprises.

6. Que l'ICOMOS établisse une liste de spécialistes pour l'application de l'électrodrainage; ces spécialistes pourront être sollicités en cas de besoin.

7. Que l'ICOMOS stimule la poursuite des recherches dans le domaine du perfectionnement de l'électrodrainage et qu'il recommande la publication des ouvrages spécialisés.

8. Que l'ICOMOS stimule l'amorçage de certaines recherches organisées pour l'application des méthodes électrochimiques de consolidation des bâtiments désagréés, aujourd'hui insuffisamment connues ou appliquées aux bâtiments proprement dits.

9. L'organisation par l'ICOMOS et l'ICOM d'un groupe de travail sous la présidence d'un spécialiste reconnu, en vue de la coordination des recherches et des applications dans le domaine de l'électrodrainage des constructions et de l'application des méthodes électrochimiques de consolidation des matériaux désagrégés.

10. Assurer les fonds et l'appareillage nécessaires pour approfondir ces recherches, à l'un des instituts nationaux de recherches.

D. MORARU