Potential fossil hominid sites for inscription on the World Heritage List - A Comparative Study, 1997

 

by Clive Gamble and Chris Stringer




Introduction

Human origins is a subject of global interest. Not only are there questions of how, when, and where we evolved in the remote past but equally there are those which address the roots of our current ethnic diversity. All of these questions require fossil evidence to be answered. They need material collected from different habitats and samples from many countries. The fossil record has grown enormously in the past fifty years, and in particular with the wealth of finds made in the African Rift valley. It is to be hoped that a similar pace will follow, particularly in other parts of the Old World. We expect that the picture we have today will change enormously in the next fifty years.

A brief prehistory of human evolution

The course of human evolution can briefly be divided into four periods

A  5 million years to 1 million years ago.
B  1 million to 300,000 years ago.
C  300,000 to 30,000 years ago.
D  150,000 - 10,000 years ago.
The salient discoveries for each period are as follows

A  5 million years to 1 million years ago

During this period the hominids split from the last common ancestor. On genetic and anatomical evidence this was a chimpanzee-like primate. Estimates of this divergence put the evolution of a distinct hominid line at 5 million years ago.

The early evolution is exclusively African, and most of it south of the Sahara. In the last fifty years many fossil discoveries have revealed a complex picture of contemporary but very different hominids. For example, two million years ago in parts of this region the Australopithecines (southern apes) lived in the same habitats as early examples of our genus Homo. This co-presence of similar but unrelated lineages has been a consistent feature, until the present day, of human evolution.

At some time between 2 and 1 million hominids moved north and colonized large parts of Asia and Europe.

B  1 million to 300,000 years ago

During this period there are only representatives of the genus Homo. However, there is considerable regional diversity, as shown by the shape of fossil skulls and teeth. These hominids were still confined to parts of the Old World. They were powerfully built and recent finds have shown them to be much larger than previously thought.

C  300,000 to 30,000 years ago

For much of this period we see the regional evolution of Homo. The best known and largest sample comes from Europe and western Asia, where the Neanderthals form one of the best known fossil populations.

D  150,000 - 10,000 years ago

As early as 150,000 years ago in eastern Africa we find fossil skulls of essentially modern type. Africa has now been identified both genetically and anatomically as the evolutionary centre for the appearance of people who looked, and eventually acted, like us. The most economical explanation of the evidence is that successive population movements out of Africa replaced the regional populations, such as the Neanderthals, in all parts of the inhabited Old World. One of the novelties associated with these modern people is their global colonization. It is in the last third of this period that people first colonized Australia, the Pacific islands, the northern parts of Asia, the American continents, and the Arctic. This great prehistoric colonization achieved primarily by people with a hunting and gathering lifestyle drew the demographic and geographical map for the later development of ethnic and regional populations of Homo sapiens.

Criteria for selection of hominid sites for inscription

In the light of the current general picture of human and hominid evolution we identify the following six criteria for assessing known sites:

  1. There is no substitute for good chronologies. Many of the arguments in palaeoanthropology stem from poor dating of fossils. Well dated material allows the taxonomist to sort out phylogenetic relationships and rates of evolutionary change. Dating by isotopic decay methods have revolutionized the subject
  2. The numbers of fossils from a single locality or within an identifiable geological unit. If well dated, the opportunities for scientific analysis of more than one skull or skeleton are very rewarding. The advantage of large samples lies in tackling questions of population variability, the necessary condition if evolution under natural selection is to occur
  3. The antiquity of the finds, is also dependent on good dating, preferably by science-based methods. While age is not a sufficient criterion by itself, it must be recognized that finds from certain periods (eg the crucial period 5-4 million years ago when hominids were splitting from the last common ancestor) are still extremely rare
  4. The potential for further finds must also be recognized. Preservation conditions can be assessed and ranked from poor to exceptional. However, there will always be an element of good fortune in finding fragmentary fossil material. Hominids were never very plentiful and their remains are hard to find. For example, the find of two teeth and a tibia at Boxgrove (southern England) increases in significance because of the preservation of 20km of similar deposits along an ancient shoreline.
  5. To talk of Hominid sites is increasingly a misnomer. Instead we should think of groups of closely related sites and even landscapes. What is needed in the study of human evolution are good contexts which preserve good environmental and archaeological evidence as well as hominid fossils. This is needed in order to interpret their lifestyles and capabilities.
  6. A number of fossils have an important historical and even iconic position in the discovery and demonstration of human evolution. These sites, such as Olduvai Gorge and La Chapelle aux Saints, are signposts on the route to our own self-discovery of our evolutionary heritage.

Provisional list

With these points in mind we have drawn up the following provisional list. We have organized the sites into three groups and indicated to which time period (A-D) they belong.

Group 1 Sites with hominid material that are already inscribed on the list
Ngorongoro with Olduvai Gorge (Tanzania) A, B
Zhoukoudian (China) B, D
Awash and Omo Basins (Ethiopia) A, D
Willandra Lakes (Australia) D
Sangiran (Indonesia) A?, B

Group 2 Sites with hominid remains that score most highly on our six criteria and which we would recommend for consideration
Koobi Fora & Turkana Basin (Kenya) A,C,D
Atapuerca (Spain) B
Mount Carmel (Israel) C, D
Sterkfontein Valley (South Africa) A
Hadar/Afar (Ethiopia) A
Fossil caves of the Dordogne (France) C, D

Group 3 Sites with important hominid remains for which a good case could be made but which do not score as highly
Eastern Germany travertine sites B, C
Dolni Vestonice-Pavlov (Czech Republic) D
Murray River cemeteries (Australia) D
Solo River (Indonesia) B, C
Raised beaches of Sussex (United Kingdom) B

Group 4 Sites with notable fossil material but the lowest scores on the six criteria. 
* denotes no fossil hominid finds as yet but with every expectation of discovery.
Shanidar (Iraq) C
Klasies River Mouth (South Africa) D
*Schöningen (Germany) B
Gibraltar (United Kingdom) C, D
Monte Circeo (Italy) C, D
Grimaldi (Italy) D
Elandsfontein (South Africa) B
Crimean caves (Ukraine) C, D
Kostenki (Russia) D
Vogelherd Cave (Germany) D
Caune Arago (France) B
Croatian caves C, D
Haua Fteah (Libya) C, D
Niah Caves (Malaysia) D
Border Cave (South Africa) D

 


Recommended general reading

Day, M. H., 1986. Guide to fossil man, 4th edition. London, UK: Cassell.

Gamble, C. S., 1993. Timewalkers: the prehistory of global colonization. Stroud, UK: Alan Sutton.

Oakley, K. P., B.G. Campbell, and T.I. Molleson, 1971. Catalogue of fossil hominids. Part II Europe. London, UK: British Museum (Natural History).

Oakley, K. P., B.G. Campbell, and T.I. Molleson, 1975. Catalogue of fossil hominids. Part III Americas, Asia, Australasia. London, UK: British Museum (Natural History).

Stringer, C., and C. Gamble, 1993. In search of the Neanderthals: solving the puzzle of human origins. London, UK, and New York, USA: Thames and Hudson.

Stringer, C., and E. McKie, 1996. African exodus. London, UK: Cape.

Tattersall, I., 1995. The last Neanderthal: the rise, success, and mysterious extinction of our closest human relatives. New York, USA: Macmillan.


 

*
Professor Clive Gamble

University of Southampton,
United Kingdom

Professor Chris Stringer

Natural History Museum, London,
United Kingdom

14 October 1997

 

 

By using this website you agree to the use of cookies to recognize your repeat visits and preferences, the display of videos and the measurement of audiences.No cookies are used to track you for commercial or advertising purposes.

Your browser and online tools allow you to adjust the setting of these cookies. Learn more

I understand

ICOMOS
Cookies Policy

ICOMOS informs you that, when browsing the ICOMOS website and all the pages of this domain, cookies are placed on the user's computer, mobile or tablet. No cookies are used to track users for commercial or advertising purposes.

A cookie is a piece of information stored by a website on the user's computer and that the user's browser provides to the website during each user’s visit.

These cookies essentially allow ICOMOS to:

You will find below the list of cookies used by our website and their characteristics:

Cookies created by the use of a third-part service on the website:

 https://developers.google.com/analytics/devguides/collection/analyticsjs/cookie-usage)

 https://policies.google.com/technologies/types?hl=en)

For information:

You can set up your browser to alert you of the presence cookies and offer you to accept them or not. You can accept or refuse cookies on a case-by-case basis or refuse them once and for all. However, some features of the ICOM website cannot function properly without cookies activated. 

The setting of cookies is different for each browser and generally described in the help menus. You will find more explanations on how to proceed via the links below.

Firefox   •  

Chrome     

Safari     

Internet Explorer

 

Dowload ICOMOS Cookies Policy